特 集 北海道胆振東部地震(平成30年) □北海道胆振東部地震によって 膨大な数の斜面崩壊が発生した理由

京都大学 防災研究所 教授 千木良 雅 弘

1. はじめに

2018年北海道胆振東部地震によって、厚真町を 中心として震度7から6強の地域で我が国の過去 に例を見ない数の斜面崩壊(崩壊性地すべり)が 発生した(図-1)。国土地理院の地理院地図には、 東西20km、南北20kmの範囲に約8000個の斜面崩 壊がプロットされており、日高幌内川上流等に認 められる岩盤地すべりを除くと、これらのほとん どは降下火砕物の崩壊である。いずれも、高速で 遠方まで移動したものが多く、斜面下方の集落等 は甚大な被害を受けた。本研究では、このように 多数の崩壊が発生した重要な原因が、降下火砕物 の風化と斜面の形態にあったことを述べる。

図-1 厚真町の崩壊発生状況.(アジア航測株式会社・ 朝日航洋株式会社)

2. 地質と地形

当該地域は、標高200mから400mの丘陵地であ り、谷壁斜面が谷側で急になるような傾斜変換線 を有しており、いわば谷の中に谷がある「谷中谷」 となっている(図-2)。この谷中谷は、火砕物や 崖錐に覆われて見えない場合も多いが、厚真町か ら静内方面にかけて広く認めることができる。そ の成因は明らかではないが、隆起あるいは海水準 の変化が一因であると考えられる。斜面崩壊多発

図-2 日高幌内川に見られた遷急線。(A) Google earth 画像。白波線は遷急線。黒四角は B の範囲。(B) 遷急線よりも上方の崩壊。

地の基盤は中新世の堆積岩であり、その上に火砕 物が堆積している。堆積岩類は泥岩、頁岩、砂岩、 礫岩などからなり、北北西 - 南南東方向の走向を 持ち、厚真川とその支流の頗美宇沢に中心を持つ 複数のドームとベーズンをなしている(松野・石 田、1960)。これらを火山の噴出物が覆っている。 斜面崩壊が多発した地域は、樽前火山起源の樽前 d降下火砕堆積物(Ta-d、9000年前)、恵庭火山 起源の恵庭a降下軽石(En-a、20000年前)の厚 く分布する地域にあたる(中川ほか、2018)。

3. すべり面の形成された層準と風化状況

3.1 層序

20数か所の崩壊地の現地調査を行った。それに よれば、崩壊したのは、南部では樽前山の噴出物、 北部では恵庭岳から噴出した降下火砕物が主体で あった。崩壊地の縁では、たいていの場合、降下 火砕物の積み重なりが良く観察できた。調査地 の北部では En-a が最大1.5mと厚く、また、南部 では Ta-d が最大1.3mと厚い(図-3)。南部では、 地表から、黒土、Ta-

b, Ta-c, 黒土、Ta-dの 順に積み重なっていた。 Ta-dの下は、すぐに 基盤岩である場合、基 盤岩との間に軽石混じ り火山灰土、Ta-dの 一部の再堆積物、En-a の再堆積物が挟まれる 場合が認められた。北 部では、Ta-b, c は数 cm と薄く、Ta-d も赤 色の火山灰土として認 められた。Ta-dの下 には、En-a, 支笏火山 由来の降下軽石堆積物 (Spfa-1), クッタラ火

山由来の降下軽石堆積物(Kt-1)の軽石層が認め られた。これらの崩壊地の地質柱状図の代表的な ものを図-4に示す。

図-3 調査地の崩壊地に露出した典型的な露頭写真と 簡易貫入試験結果。(A) En-a と下位の Spfa-1と 間の火山灰土。安平川上流。(B) 旭地区の崩壊地 の側部崖の露頭。Ta-d と Ta-b。(C) 露頭 B 背後 で実施した簡易貫入試験結果。これらの位置につ いては、図-5を参照。

図-4 調査地域の地質柱状図(すべり面の位置を示す).

3.2 すべり面の形成された地層

すべった地層は、軽石、火山灰土、黒土である。 すべり面は、次のような個所に形成されていた。

- Ta-d 最下部の厚さ約5cmの細粒軽石層
- Ta-d 直下の軽石混じり火山灰土
- Ta-d 直下の En-a 再堆積物
- Ta-d 本体直下の Ta-d 再堆積物
- En-a 直下の火山灰土

すべり面の形成された層準を整理して地図にプ ロットしたものを図-5に示す。ここに示したよ うに、北部では、En-a 直下の火山灰土にすべり 面が形成されたものが確認された。中央部から 南部では、Ta-d の最下部の風化軽石層、あるい は、Ta-d の下にある Ta-d あるいは En-a の軽石 が再堆積した層、あるいは Ta-d の下の軽石混じ り火山灰土 (PbVs) にすべり面が形成されていた。 すべり面は決して隣り合う地層の境界に単一面と して形成されているわけではなく、あるゾーンが "すべり層"となっていた。その例を図-6に示す。

図-6 降下火砕物の地すべりのすべり層。(A) 泥岩基 盤の上に載る Ta-d 最下部のすべり層。Ta-d 最下 部層が崩積土の下のすべり層に連続している。朝 日地区。(B) 崩積土と泥岩との間のすべり層。朝 日地区。(C) 再堆積した En-a が広く露出する崩 壊地。幌里。(D) 再堆積 En-a 最上部の練り返し ゾーン(すべり層)。幌里。場所は図-5参照。

図-5 すべり面の層準の分布. 図-4の柱状図と比較のこと.

3.3 火砕物の風化状況

地表から深部に向けて観察すると、後述する Ta-d 内部の特殊な部分を除いて、すべり面の形 成された地層のみが特に風化して粘土化してい た。Ta-b,Ta-c は硬い軽石からなり、ほとんど変 質が認められない。風化は、Ta-bの下の黒土よ りも下のTa-d以深に認められた。ただし、En-a や Spfa-1、Kt-1の軽石に挟まれる火山灰土は粘土 化していたが、これらの軽石自体が粘土化してい る様子は認められなかった。Ta-d上部は赤色化 している場合が多く、それらは指で容易に潰せる ほど脆弱であったが、後述するように粘土鉱物は 生成していなかった。

図-3C に動的簡易貫入試験によって得られた打 撃回数のプロファイルを示した。これは、直径 1.5cm、先端角度60度のコーンを3kgの錘の50cm 自由落下によって打撃し、コーンを10cm 打ち込 むのに要した打撃回数を測定するもので、つく ばマルトー式の簡易貫入試験とほぼ同様の結果 が得られる(戸邉、2008)。また、若月(2003) と Grachef et al. (2011)の関係式から、本試験結 果のN₁₀は、標準貫入試験のN値と、N=2.2N₁₀と 関係づけられる。図-3Cに示すように、Nu値は、 Ta-d 上部まで5以下であるが、Ta-d 下部で増加 し、その最下部で5となり、基盤岩では10以上と なった。この Ta-d 最下部がすべり層に相当する が、実際にはTa-d最下部の細粒軽石は厚さ5cm 程度なので、この貫入試験では詳細にはとらえら れていない。

3.4 Ta-d の特異な風化形態

Ta-dには、至る所で周氷河作用によるインボ リューションに似た構造が認められた。これは、 不規則形状な下縁を持つカーテンのような模様で ある(図-7)。この構造はTa-dの層内に限られ、 また、軽石相互のかみ合わせが保たれているので、 インボリューションではない。

この構造は、断面的に見て、下縁形状が不規則

図-7 Ta-dに形成されたカーテン状構造。(A)酸化 フロント直下に粘土化軽石層(白色部)を伴う。(B) Ta-d基底に形成された粘土化軽石層を伴うカーテ ン状構造。酸化帯は明瞭な酸化フロントを持たず に下方の非酸化帯に漸移する。スケールの長さは 30cm。

なカーテンが下がっているように見えることから、 カーテン状構造と呼んだ。

このような風化帯構造は極めてまれなもので、 筆者は、これら以外に今まで見たことがない。ま た、これらの構造は、Ta-dの軽石層の中を降下 する浸透水と軽石との相互反応によることは明ら かであるが、この構造と今回の地震による斜面崩 壊の発生とは直接的な因果関係はないと思われる ので、詳細は省略する。

3.5 すべり面形成層の鉱物組成

すべり面形成層準について3.2節で述べた。こ れらのすべり面構成物質を分析した結果、すべり 面形成層にはすべてハロイサイトと呼ばれる粘土 鉱物が主要粘土鉱物として含まれることがわかっ た。赤色火山灰土となった Ta-d は指で容易に潰 せるほど脆弱であったが、粘土鉱物は含まれな かった

すべり面となり、ハロイサイトを含む層は、基 盤岩の難透水層の直上の細粒軽石(Ta-d 最下部) あるいは再堆積 En-a および再堆積 Ta-d、それ自 体が難透水で保水性が良いと思われる火山灰土あ るいは軽石混じり火山灰土であった。

膨大な数の斜面崩壊が発生した理由 と従来の事例との比較

今回の地震で膨大な数の斜面崩壊が発生した理 由は2つある。第1は、広い範囲に流れ盤の不安 定な地盤構造が形成されていたことであり、第2 は、これらの流れ盤構造をなす地層の斜面下部が 広範囲にわたって切断されていたと推定されるこ とである。

第1の、広い範囲に不安定な地盤構造があった ことについて考える。3節までに述べたように、 数多く発生した斜面崩壊の多くは、樽前火山から 噴出した軽石 Ta-d 軽石の基底部あるいはその直 下の軽石混じり火山灰土層にすべり面を持ってお り、一部は恵庭火山から噴出した En-a 軽石直下 の火山灰土にすべり面を持っていた。これらのす べり面形成層は、風化によってハロイサイトと呼 ばれる粘土鉱物を有していた。この鉱物は、後述 するように、従来も地震によって流動的な崩壊の 原因となっていたものである。Ta-d および En-a は噴出源の火山の東方に広く分布しており、いず れも空から降下して地表を毛布のように覆い、斜 面ではすべりやすい流れ盤構造をなしていた。ま た、これらの地層は、地表からの浸透水によって 同様の風化作用を受けたため、それらには同様の 弱層が形成されていた。これらが第1の理由の説 明である。

第2の流れ盤構造をなす地層の斜面下部が広範

囲にわたって切断されていたことについて述べる。 第1節に述べたように、厚真および、その周辺の もっと広い範囲では、谷壁斜面の途中に傾斜が谷 川に急になる傾斜変換線がある。これだけ広範囲 に認められる理由は、まだ定かではないが、おそ らく地盤の広域的な隆起に求められるように思え る。いずれにしても、この傾斜変換線のため、谷 壁に堆積した Ta-d などの降下火砕物は、急な谷 中谷では失われていることも多く、また、失われ ていないにしても、斜面上方の地層を下方から支 える力は小さかったと推定される。このため、斜 面上方にある不安定な地層がいたるところで崩壊 したと推定される。これが第2の理由である。

2018年胆振東部地震によって引き起こされた斜 面崩壊と同様の斜面崩壊は従来多数生じてきた (表-1、Chigira and Suzuki, 2016; 千木良、2018)。 降下火砕物は、前述したように、広い領域に同様 の地盤条件を形作るため、たいていの場合一度の 地震によって多数の斜面崩壊が発生した。これら の事例では、すべり面はハロイサイトに富む層に 形成された。すべり面の深さは、最も深いもので 200mであったが、多くの場合、数mであった。

すべり面の形成された層は、いくつかにタイプ 分けできる(図-8、千木良、2018に加筆)。最も 多いのは、軽石が関係した層である。軽石直下の 火山灰土、軽石そのもの、軽石直下の軽石混じり の土である。今回の2018年胆振東部地震によるも のも同様である。そのほかに、火山灰土に挟まれ る火山礫、褐色火山灰土の下の黒土、酸性溶岩に 接する火山灰土にすべり面のできた例もあるが、 これらの事例は少ない。

-i
ータを追加
ドリ
(2018)
千木良
(2016),
id Suzuki
Chigira an
Ĺ
、た地震の
多発し
崩壊を
(災物の)
降下人
表1

	1923	関東	1949 今市	1968 十勝沖	1978 伊豆大島近海	1984 長野県西部	2011東北	2016熊本	2018胆振東部	2001 エルサルバドル	2009 パダン
9月1日	1 🛛		12月26日	5月16日	1月14日	9月14日	3月11日	4月14日, 16日	9月6日	1月13日	9月30日
Mjma 7.9	a 7.9		Mjma 6.4	Mjma7.9 (Mw8.2)	Mjma 7.0	Mjma6.8	Mw 9.0	Mjma6.5 Mjma7.3	Mjma6.7	Mw7.7	Mw 7.5
9			$5 \sim 6$	5	$5 \sim 6$	9	6- ~6+	+9	$2 \sim +9$	$\begin{array}{c} \text{MM 6, 7} \\ 4 \sim 5^{-} (\text{JMA}) \end{array}$	MM 8 (USGS) 5+(JMA)
		I	宇都宮	八戸	稲取	御岳山	白河	南阿蘇	厚真		
			22.5	181	12	183	12.5	79.5	30	データだし	
		I	80.8	292	172	555	83.5	83	225	(11月~4月	データなし (降 雨中に発生)
I		I	255	307	334	839	93.5	716	275	([[]] ([]]) ([]) ([
2 (根府川)		1 (秦野, 震生 湖)	88 ^{a)}	$152^{b)}$	7 ⁴⁾ (物質の分 布が狭かった)	$5^{\mathrm{j})}$	$< 10^{e)}$	56 <	8000	$>1000^{g}$	$160^{i)}$
風化軽石 ^m ハロイサイト		風化軽石 ^m ハロイサイト	風化軽石 ^{a)} , 火山礫 ^{m)} ハロイサイトe ^{a)}	古土壌 (砂質火山灰) ハロイサイト ^の	古土壌 ハロイサイト ^{d)}	風化軽石と スコリア ハロイサイト ¹⁰	古土壌 ハロイサイト [®]	軽石, 火山灰 土	軽石、軽石混 じり火山灰土 ハロイサイト	古土壤 ⁰ 粘土鉱物は不 明	風化軽石と古 土壌との混合 ハロイサイド ³
米神溶岩"	1	東京軽石層 (66 ka) ^{r)}	鹿沼軽石 (32ka),小 川火山礫,今 市軽石 ^{m)}	十和田八戸テ フラ (15ka) [©]	鉢の山テフラの 下位(29ka) ⁽¹⁾	千本松スコリア (84~76ka) ^{p)}	Sr10 (スコリア) 下位,高久軽 石 (330ka) 相 当 ⁰	Kpfa(30ka) 他	Ta-d (9ka), En-a (18 ka) 下位の火山底 土	Tobas Color Caf é deposits	Qhpt の基底 (70~80ka よ りも若い) ^{t)}
箱根火山の 安山岩熔岩, 火山礫 ¹⁰		箱根火山と 富士火山の デフラ [10	男体火山のテ フラ	十和田火山 のテフラ ^{b.c)}	東伊豆単性火 山群のテフラ ⁴⁾	スコリア, 溶岩, アグルチネート, 段丘堆積物	那須火山のテ フラッ	阿藤カルデラ内 の降下火災物	Ta-d, En-a	Tierra Blanca and the Tobas Color Café deposits の軽石等	Tandikat Volcano の軽石 (Qhpt)
$70\mathrm{m}, 30\mathrm{m}$		17m	$3\sim 5m^{a}$	$< 3m^{ m b)}, 1 \sim 2.5 m^{ m c)}$	$2\!\sim\!6\mathrm{m}^{\mathrm{d}}$	$5\mathrm{m}\!\sim\!200\mathrm{m}$	$3\!\sim\!9\mathrm{m}^{\mathrm{e})}$	2.5 - 13 m	2-3m	ca.20m (Las Colinas) ^{tĵ}	$3.5 \sim 5.5 \mathrm{m}^{\mathrm{i}}$
有		有	有	有	有	有	有	有	有	有	有
有		有	有	多分有	有	有	有	有	有	有	大部分有
447^{n}		2	8	33	7	29	13	16	36	844^{g}	600?
a: Morimoto (1 [,] i: Nakano et al. r) : 笠間他 (2		951); b: 井上他 (2015); j: 平野 008); s): 竹内	(1970);c:吉田· 他 (1985);k: F 他 (1998);t)	·千木良(2012) 王中(1985);1: Tjia and Muham	;d: Chigira (1982 鈴木 (1993);m: mad (2008);u)	2) ;e:千木良他 (: 千木良他 (201' - : 高橋編 (2007	(2012); f: Crosta 7); n: Kamai (1 7)	et al. (2005); g 990); o: 鈴木 (: Jibson et al. (2 1992) ; p: 小林	2004);h) Evans ((1987);q: 早川	ž Bent(2004); ・パい山(1992);

図-8 ハロイサイトに富むすべり層の層準を示す模式図. Chigira and Suzuki (2016) にデータを追加.

5. 結論

2019年北海道胆振地震によって発生した斜面崩 壊の大部分は、降下火砕物の崩壊であり、特定の 地層がハロイサイト化し、そこにすべり面ができ たものであった。最も多かったのは9000年前の Ta-dと呼ばれる軽石層の基底部の細粒軽石層に すべり面を持つものであった。そのほかは、Ta-d あるいは En-a の再堆積物、Ta-d あるいは20000 年前の En-a 直下の火山灰土および軽石混じり火 山灰土にすべり面を持つもので、これらも軽石層 に付随する層として考えることができる。これら の層は、給源火山の東方に広く分布しており、広 範に同様の不安定な地盤構造を形作っていた。こ れが、膨大な数の崩壊が発生した第1の理由であ る。さらに、これらの地層は、広範囲で斜面下部 で切断されていたこと、これが第2の理由である。

従来の地震時の降下火砕物の斜面崩壊をみても、 今後の同様の現象を予測するには、まず第1に軽 石層の分布、および斜面下部の地層切断状況を知 ることが最重要であると言えよう。

謝 辞

本報告は、千木良・田近・石丸(2019)を簡略 化したものである。

参考文献

- 中川光弘・宮坂瑞穂・三浦大助・上澤真平(2018): 南西北海道、石狩低地帯におけるテフラ層序学: 支笏 - 洞爺火山地域の噴火履歴。地質学雑誌、 124, pp. 473-489.
- 千木良雅弘(2018):災害地質学ノート。近未来社、 名古屋。
- 千木良雅弘・田近淳・石丸聡(2019):2018年胆振 東部地震による降下火砕物の崩壊:特に火砕物の 風化状況について。京都大学防災研究所年報、印 刷中。
- 戸邊隼人(2008):風化花崗岩類の表層崩壊と風化 様式、および岩石組織との関係について。京都大 学大学院理学研究科地球惑星科学専攻学位論文。
- 松野久也・石田正夫(1960):5万分の1地質図幅 早来。北海道開発庁。
- Chigira, M. & Suzuki, T. 2016. Prediction of earthquake-induced landslides of pyroclastic fall deposits. In: Aversa, S., Cascini, L., Picarelli, L. & Scavia, C. (eds.) Landslides and Engineered Slopes. Experience, Theory and Practice. Associone Geotecnica Italiana, Rome, pp. 93-100.